Monthly Archives: November 2017

Address Your Peak Demand To Really Reduce Costs

It used to be that a building utilized an electricity meter, which recorded how much electricity was entering the building during a month (billing cycle), it would be recorded, and the building owner would be charged for that electricity used (in kilowatt-hours). Simple: the more usage, the more one would pay. But some time ago that changed for many utilities. As the economy grew and technology grew, electricity demand rose greatly. However, keeping up with the growth in demand became a challenge due to more farflung buildings and infrastructure upgrades to provide power. For many utilities, it is possible that they cannot deliver electricity to all users in an area, especially during peak demand, which is a hot, summer afternoon when there is maximum usage of air conditioning. Technology has made this worse. For example, people can be comfortable and well air conditioned in their offices and with their smart phones, at the same time, start their air conditioners at home, so the house is comfortable when they walk in.

Being thus challenged, utilities began to confer an additional charge to certain customers for peak demand in addition to the electric usage charge. Having a very high demand (in kilowatts) for a short period – even for just 15 minutes – in a one-month cycle can become very costly. In fact, utilities often charge for peak demand on a sliding scale, with the highest such charges being conferred in the summer. Therefore, while a robust energy audit to reduce usage is a good thing, such an audit should reveal opportunities to also reduce that peak demand, as well.

To address the issue of peak demand, first study your electric bills and see for yourself what your peak demand charges are. How high are they? What rates does your utility use? What has been your historic peak electric rate (peak kW) and how does it vary by season? Once that is better understood, here are some inexpensive, but effective strategies to reduce the peak energy costs, yet still serve your building power needs.

Let’s use an actual example. A large building’s July electric bill indicates a peak demand of 136 kW during one short period due to several rooftop air conditioning units cooling most of the building, many rooms being lit, and a number of laptops, flatscreen TVs, and other plug load operating. The building owner pays $35 per peak kW, a very high rate

Reduce Usage – Reducing usage, of course, not only reduces that charge, but also your peak demand and charge. Simple example: a building replaces 100 fluorescents of 40 watts each with 100 LEDs of 16 watts each. Assuming 50 hours/week of operation, the reduction is 2.4 kW in peak demand and 520 kWh in usage per month. At $35/kW and $0.08/kWh, savings is over $125/month, with three-quarters of this from reducing peak demand. If building can de-lamp fixtures or dim LEDs, savings would be greater.

Modify Scheduling – This building is incurring this high peak demand cost because it is operating many energy intensive processes simultaneously. Modifying the schedule can alleviate this problem of multiple equipment operating, if certain equipment can cycle off during peak hours. Can the rooftop units be rotated such that there is no period when all are operating simultaneously? In other words, operate a couple of them earlier in the day and have them turned off during a particular hot period, but the rooms have been cooled sufficiently for comfort. A building management system (BMS) can be programmed to effect such a solution, such as turning off certain rooftop units during peak times and dimming certain lights, especially those near windows receiving sunlight. For example, a “typical” 20-ton rooftop unit has a demand of 24 kW of power (the actual number depends on its efficiency). If a BMS can ensure that 2 units are not operating at all times, then that peak demand of every unit being on would be reduced by 48 kW. At $35/kW, this would reduce the peak charge by $1,680, well worth the effort. And this is for one month, although the rate represents the summer months, so over one year, the savings would not be this figure times 12.

A related example of scheduling to reduce peak demand is to implement an HVAC scheduling program taking into account the predicted weather to turn on certain units during the night, even if the building is unoccupied, instead of a custodian turning on all of the units at the start of the day. This is applicable to both cooling (air conditioning) and to electric heating. Operating an electric heating unit when it may be very cold at night and the building is not occupied may increase usage slightly, but will reduce the need to use it during occupancy, and, thus, given high demand rates, will reduce peak demand and thus, reduce overall electric costs, even if overall usage rises slightly.

Peak Shaving – Another way to reduce electric demand in a peak period is to create electricity during other time periods to use during what would normally be your peak demand. During periods of low electricity demand, the building can charge batteries with electricity from the grid. Then during times of high electric demand, the building can use the stored electricity instead of having it provided then. Between the capital costs of the batteries and the loss of some electricity in time, this can be a costly option, but it may be economical if the building pays a high peak demand rate. This can also be applied specifically to cooling. Chillers can create ice at night, which is a cooling energy storage. Air can then flow through the ice to provide cooling for the building during a period of peak use, while using little electricity (just for the fans, not to make the cool air).

Alternative Energy – Renewable power, such as solar PV and wind can help reduce peak demand charges, as such sources of power does not require electricity from the grid. Whatever electricity is produced by the solar array is less to be supplied by the utility. Two negatives. One, such systems are expensive to install. Also, they depend on the presence of sun (or wind). If there is a hot day calling for a high cooling demand, but it is also cloudy, then the solar panels cannot produce the needed electricity to meet the basic building demand. Thus, there is no reduction in peak demand from the utility, and the building owner pays the same high demand charge as before.

CCES has the expertise to help your building or company reduce your energy costs, whether it be the usage or the demand portion. We can help you devise strategies to fit your needs for reliable power, while minimizing those high demand costs. Contact us today at karell@CCESWorld.com or at 914-584-6720.

Interest In New Gensets Is Growing

The number of facilities choosing to generate their own electricity using generators or “gensets” is growing. Companies are recognizing that the physical and business impacts of even one severe storm can undo all the planning a business does and even wipe out or severely hurt the business. In addition, with the acceptance of climate change as real the chances of a severe storm impacting a facility will rise in the future. A facility having its own secure source of electricity independent of the grid and its wires and vulnerable infrastructure can better ensure that basic functions can be maintained in a storm, saving personnel and processes and having electricity to maintain operations during such events. As a result, the genset market has been growing.

Part of this growth is due to another phenomenon, some utilities provide financial incentives for facilities to procure and operate gensets to relieve them as they are unsure of reliable power and don’t want to hurt key users in their area. In addition, several such programs require the genset operator to go off the utility’s grid and operate the genset for distinct periods during peak demand periods (hot weather) to relieve pressure on the grid. These programs, often called “Demand Response” or DR, can be lucrative for facilities. The utility pays most of the capital cost of the genset, the facility fully owns it, and they get paid a fee each time a DR event occurs and a genset is used.

One complication of such programs, however, is environmental. The federal Clean Air Act, followed by nearly all states, specifically exempts from permitting and meeting emission standards gensets that are used only in emergencies (this includes the necessary regular exercising of a unit). However, once a facility uses a genset in a DR program, this exemption goes away. Therefore, facilities entertaining joining a DR program must set aside budget and effort to obtain the proper air permit (or modify its existing one) and comply with any applicable emission standard. Nitrogen oxide (NOx) is the most common pollutant that is regulated. If the NOx emissions of your genset exceeds the regulatory standard, it may be necessary to retrofit the unit with Selective Catalytic Reduction (SCR) or equivalent technology. The cost of such a retrofit can approach 6 figures. The USEPA designates models as meeting certain “tiered” standards. Tier 4 gensets are the most advanced and will likely currently meet all applicable emission regulations. Tier 3 gensets probably meet most of them. Tier 2 units probably do not meet many of them, again, if applicable. So if you are procuring a new genset, look to invest in a Tier 4 which should meet all applicable NOx emission standards. Particulate matter (PM) is sometimes regulated, too. A sure way to meet any PM standard is to combust natural gas, not to mention it is currently cheaper than oil. Natural gas-fired gensets are particularly selling well these days.

Finally, another variation of the genset that many facilities are considering is combined heat and power or CHP, where both steam and electricity are produced by the unit. The improvement in efficiency can save significant fuel costs. It is important for an experienced engineer to evaluate whether your demand for both steam and electricity and when the demand occurs will make CHP a good investment.

CCES can help your firm determine whether a genset or a CHP can be beneficial for you, as well as manage its procurement, installation, testing, and use to maximize the financial benefits. We can determine likely financial costs and savings. We can perform the needed environmental permitting and determine whether it meets existing applicable emission limits. Contact us today at karell@CCESworld.com or at 914-584-6720.

Underevaluated Source of Energy Usage: Plug Load

When a building owner or manager calls for an energy audit, they are usually looking for ways to upgrade lighting, HVAC, insulation or windows to save energy. The big items. Technology has improved markedly in recent years in these areas to justify upgrades resulting in significant energy use savings.

However, one area that is sometimes overlooked in an energy audit is plug load. According to the US Energy Information Administration, plug load can comprise up to 30% of total energy consumption of a commercial building. It should not be neglected.

Plug load is energy demand (almost always electricity) from devices plugged into electrical outlets (one notable exception is a stove/oven, plugged into a supply of natural gas. These devices include computers, speakers, printers, monitors, scanner, copiers, chargers, TVs, space heaters, fans, refrigerators, microwaves, coffee machines, vending machines, task (desk) lighting, and others. These are mainly small items and taken for granted because they are so commonplace. However, while each item may draw less electricity compared to a large AC, cumulatively they can use significant energy and if not properly planned and controlled, can impact your energy costs.

3 Things You Can Do To Lower Plug Load Energy Costs

Use Efficient Equipment

While these may be “small” items one just “runs in” and purchases quickly, there are differences in energy use among similar equipment. The USEPA and USDOE have a joint program called “Energy Star” which compares many plug load items. Brands that are Energy Star-certified generally use at least 20% less energy (usually, electricity) than the average for the item, yet performs the same. Such items have an Energy Star logo displayed prominently on the equipment and box. A McKinsey study lists different strategies to reduce GHG emissions (usually matched with energy reduction), and puts plug load programs like Energy Star at or near the top in terms of economic effectiveness. See page 5 of the report from: https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/impact-of-the-financial-crisis-on-carbon-economics-version-21. Many Energy Star products may be a few more dollars (or for larger equipment, $50) more expensive than the average one, but the energy savings will pay back that extra upfront cost very quickly, normally in just a few months. And then the savings for the rest of the time you own the equipment is “gravy”.

Another advantage of Energy Star is that it is an energy cost saving approach that does not rely on engineering or any kind of “work.” It is simple: a change in policy by Purchasing to purchase only Energy Star products allow you to lock in cost savings.

Controls

Smart controls allow you to program equipment for, say, “sleep” mode during certain hours or off altogether. For example, software can turn a vending machine’s lights and refrigeration off or reduce them slightly during non-office hours to save energy, yet keep food fresh. Sensors can turn off computers or lights when not in use. Make sure controls can be overridden, when necessary. This allows you to keep energy from being used when not needed, yet does not involve daily manual efforts to do so, which rarely work.

Raise Awareness

Make sure your employees/residents understand the importance of plug load as contributing to energy costs, which affect their costs as employees and renters. In time, they will be motivated to turn off equipment when not in use, saving energy. And they’ll do so at home, saving them costs, as well.

CCES can help your building or company review and analyze your energy use, including equipment, software controls, and operations with the intent of finding common sense and technological solutions to enable you to save significant energy costs while enhancing productivity. Contact us today at 914-584-6720 or at karell@CCESworld.com.

Growing Proof That Improved Indoor Quality Results in Healthier Occupants

Harvard University scientists recently published an article in the journal Building and Environment summarizing 30 years of public health research demonstrating that improved indoor environmental quality directly results in better health outcomes. “The Impact of Working in a Green-Certified Building on Cognitive Function and Health” by MacNaughton, Satish, Laurent, Flanigan, Vallarino, Coull, Spengler, and Allen, Building and Environment 114 (2017) 178-186

One recent research project utilized 109 participants from 10 buildings in 5 different US cities that met ASHRAE Standard 62.1 (2010) ventilation requirements and had low indoor total volatile organic compound concentrations. In each city, buildings were matched over time by tenant, type of worker, and work functions. Buildings were distinguished concerning whether they had achieved green certification. Workers were administered a cognitive function test of higher order decision-making performance twice during the same week while indoor environmental quality parameters were monitored. Workers in green-certified buildings scored 26% higher on cognitive function tests, controlling for annual earnings, job category and level of schooling, and had 30% fewer sick building symptoms than those workers in non-certified buildings.

These outcomes may be explained by a number of indoor environmental quality factors which certified green buildings must meet, such as temperature control and lighting. However, the findings suggest that the benefits of green certification standards go beyond measurable environmental quality factors. The researchers have given the name “buildingomics” to describe the holistic approach for examining the complexity of factors in a building that influence human health. They believe further research will identify how these different factors lead to positive cognitive and health results.

In response to this growing trend, the USGBC has recently developed and issued new building standards to maximize indoor environmental quality known as WELL. The first buildings are being evaluated for whether they meet WELL standards and the first practitioners are studying for and becoming accredited as WELL professionals. See: https://www.wellcertified.com/

CCES is growing our expertise about WELL, as well, and can provide for you information about the standards and be able to provide insight and perform a study to demonstrate whether your existing or planned building meets WELL standards and, if not, what can be done to meet the WELL certification standards, including estimated costs to achieve WELL, and to maximize the health and financial benefits of WELL certification. Contact us today at 914-584-6720 or at karell@CCESworld.com.